SMARTfit and Active Aging

According to the Alzheimer’s Association, the 2018 costs of Alzheimer’s dementia in the US alone total approximately $277 billion dollars. With a steadily increasing population of older adults, it has become critical to detect, manage, and prevent cognitive decline. Exercise and other lifestyle factors have been shown to helpful in doing this, yet more aggressive and innovative solutions have yet to be popularized. Exercise specifically has garnered attention based on its positive effects on brain structure, function and cognition. Similarly, cognitive training has been highlighted as both a rich field of potential, but also one of false claims. A technology that effectively combines the two has yet to become widespread.

SMARTFit is a multi-target system that displays complex information that allows various cognitive processes to be trained while motor and aerobic demands may be simultaneously placed on the user. SMARTFit offers a solution to harnessing the synergistic effects of simultaneous cognitive and physical training.

This whitepaper examines the synergistic effects of engaging in physical and cognitive exercises simultaneously and dives into the proposed mechanisms by which these concurrent behaviors help to shape the body and sharpen the mind. Preliminary research suggests that engaging in these two types of exercise simultaneously may be more beneficial than merely the sum of their separate gains and that their combined effects can have a profound impact on both ameliorating and preventing cognitive decline in older individuals.

In order to understand the potential mechanisms in which cognitive-motor training may be helpful, it is first critical to understand the definitions from which it borrows from, and the neurobiology of how it may create beneficial adaptations.

The Science and Practice of Dual-Tasking

Dual-tasking is the concurrent performance of two tasks that can be performed independently and have distinct and separate goals. Here, we examine the effects of dual-tasking using concurrent physical and cognitive challenges. One of the most interesting aspects of dual-tasking both physical and cognitive challenges at the same time is that one is, in fact, doing three difficult tasks simultaneously: engaging in physical exercise, working out cognitive challenges and multitasking by attending to both tasks at once and transferring attention between the two.  Frequently, performance on one or both tasks at hand can deteriorate due to the high demands on the individual. Those high demands result in increased cognitive load, and the switching between these tasks requires a lot of effort and use of executive functions.

The classic dual-task one thinks of is walking and solving math equations or saying the alphabet. However, there are many more complex dual-task situations in everyday life. Dual-tasking has many real-world applications and is one cognitive ability that tends to deteriorate with age. In fact, a reduced ability to simultaneously divide attention between tasks (dual-tasking) has been linked to reduced reaction time and walking speed, more frequent run-ins with obstacles and an increased risk in falls [1]. Inability to successfully dual-task also creates dangerous conditions when driving [2]. It seems that practicing dual-tasking can be hugely beneficial for older individuals, and may even prolong functional independence. Dual-tasking has also been shown to assess attentional resources and functional cognitive ability. Dual-tasking is even more useful when those two tasks at hand are specific to the cognitive goals and needs of the individual.

Dual tasking with aerobic exercise and cognitive challenges is a recently emerging and promising area of research. While cognitive exercise and physical exercise have unique benefits on the body and brain, several benefits are shared between the two. The primary ones are neurogenesis, synaptogenesis, and increased cerebral blood flow. Preliminary research in both animals and humans suggests that the simultaneous activation of these benefits may be larger than the additive properties of doing the two exercises sequentially or separately. Further research needs to be done to confirm some of these theories, but pilot studies on the subject are encouraging.[3]

SMARTFit allows this dual-task training to take place effectively, while maintaining engagement and practical applications to a variety of training environments. SMARTFit offers a multimodal set of cognitive stimuli that allows dual-tasking to be domain specific; meaning that instead of simply walking while reciting the ABC’s, an individual may be perform a functional task (such as a lunge), while receiving a cognitive stimulus specific to the individuals needs (such as selective attention training; the process of filtering irrelevant stimuli while directing goal-oriented attention on the “correct” stimulus, as demonstrated in the SMARTFit category “Seek the Letter”).

Research Findings on Cognitive-Motor Training

One study examined the effects of cognitive-motor dual-task training on executive functions in a sedentary older adult population over 12 weeks and found that this combined training was more beneficial than single task training alone in improving broad domains of cognitive functions.[4] In another study participants engaged in a combination of a dual task training program as well as a mixed aerobic and resistance training program. While this particular study did not find synergistic effects of the two interventions, they did find that the dual task training program led to transfer effects in terms of executive performance on neuropsychological tests. This effect was not present in the exercise only or cognitive challenge only groups.[5]

Another study looked at an intervention using at Multicomponent Training (MCT) which consists of focusing on neuromuscular coordination, balance, agility, and cognitive executive control. This study found that the MCT intervention had a profound impact on improving inhibition in an older population.[6] Animal studies using novel combinations of physical and cognitive activities resulted in significant cognitive improvements when compared with control animals, specifically in the area of working memory.[7]

Lastly, a systematic review of all current studies examining the effects of motor and cognitive dual tasking to prevent or slow the age-related decline in cognition found that either simultaneous or subsequent combined cognitive physical training was more successful when compared with singular interventions alone. This landmark study, which examined over 20 peer-reviewed articles also noted that while some results should be interpreted with caution, there is clear evidence that there are effective training interventions using cognitive physical dual tasking, provided the interventions and tests are properly designed.[8]

Mechanisms of Cognitive-Motor Training: Cerebral Blood Flow, Angiogenesis and Neurotransmitters

One shared benefit of both aerobic exercise and cognitive challenges is an increase in cerebral blood flow.[9] Cerebral blood flow is essential because while the brain does not have very much blood relative to the other organs in the body, the blood it does receive is vital to its function and overall health. Brain health, in turn, impacts the function of the body as a whole. Obviously, complete lack of blood flow to the brain deprives the brain of oxygen and results in death. Less evident is the damage that comes from inadequate cerebral blood flow in the form of oxidative stress. Oxidative stress can cause the death of brain cells and is implicated in the progression of diseases of the brain as well as in cognitive impairment and “brain fog.”

While brain fog is not entirely due to oxidative stress or lack of oxygen to the brain it is certainly an important factor and the importance of healthy blood flow to the brain cannot be overstated. This steady flow of blood bathes the vital tissues of the brain with oxygen, glucose and other nutrients. Amazingly, both regular aerobic exercise and cognitive challenges amp up this flow of nourishing blood and increase the rate at which the brain receives these necessary ingredients. The combination of the two means one is engaging in two brain blood-boosting activities at once. In addition, the adding of cognitive challenges during exercise allows for the release of acetylcholine, dopamine, and other beneficial neurotransmitters that accelerate cortical plasticity, increase engagement, and facilitate faster learning. SMARTFit can provide additional cognitive challenges while allowing for the release of these beneficial neurotransmitters through the process of learning and novelty via new, randomized tasks in a gamified context, which in turn promotes engagement. The release of these neurotransmitters has been theorized to accelerate cortical plasticity, as highlighted by the work of Dr. Michael Merzenich.

Another way both physical exercise and cognitive challenges improve brain blood health is through the mechanism of angiogenesis in the cerebellum and the cortex of the brain[14]. Angiogenesis is the physiological process by which new blood vessels form from preexisting ones. Like increased blood flow, more blood vessels in the brain result in a healthier, more nutrient-rich brain tissue. These new capillaries aid the brain tissues in the critical exchange of oxygen and metabolites. Capillaries grow and regress due to metabolic demands all over the body. Engaging in repeated activities which foster this new blood vessel growth, especially simultaneously, is an excellent way to maintain a healthy blood supply to the vital tissues of the brain. Doing so keeps the vasculature of the brain healthy and active and helps to stave off atrophy. Fascinatingly, there is emerging evidence that the progression of cognitive decline and Alzheimer’s disease itself may be due, at least in part, to an age-related decline in angiogenesis. Researchers call this theory the Angiogenesis Hypothesis.[15] In a nutshell, it suggests that Alzheimer’s and dementia symptoms are due to these age-related decreases in new blood vessel formation which in turn diminishes blood flow and reduced cerebral microcirculation. This reduction in cerebral capillary density, due to several growth factors in the blood, leads to cognitive decline. This is a burgeoning and exciting new area of research with lots of data in animal studies to support the angiogenesis hypothesis.[16] It is also interesting, of course, because it suggests that with increased blood flow and neuroangiogenesis we might be able to stave off or even reverse some age-related cognitive decline.

Trophic Factors

In addition to these shared benefits, aerobic exercise and increased cardiovascular activity can increase bioenergetic factors like Brain-Derived Neurotrophic Factor (BDNF) insulin-like growth factor -1 (IGF-1) and Vascular Endothelial Growth Factor (VEGF).[10] These growth factors are putative mechanisms by which cardiovascular activity benefits cognitive function. Changes in serum concentrations of these important markers are linked to changes in functional connectivity and brain growth. Specifically, researchers found exercise-induced increases in functional connectivity in the temporal lobe of older adults after a one-year aerobic exercise program[11]

Subjective Cognitive Decline and Dual-Tasking

In addition to brain fog, many older adults report suffering from subjective cognitive decline. Subjective cognitive decline (SCD) is the subjective interpretation of cognitive decline with no diagnosis of dementia. Oftentimes this impairment in cognition can progress to Mild Cognitive Impairment (MCI) and in some cases SCD can be the first signs of the progression of Alzheimer’s Disease (AD). Some researchers refer to the symptoms of SCD as “senior moments”. There is a range of severity in of these symptoms, from trivial forgetfulness like walking into a room and forgetting why you went there, to more severe and potentially dangerous types of memory impairment. There is preliminary evidence that engaging in challenging cognitive exercises and a variety of physical activity can help to combat SCD and may even help to reverse it.[12]

Interestingly, dual-tasking may work both as a tool to prevent cognitive decline and as an early detection mechanism. This has been seen in the dual-tasking “timed up and go” (TUG) test in which a traditional physical assessment adds a layer of cognitive assessment in order to add some more real-world functionality to it. In these assessments, individuals with early-stage cognitive decline do more poorly on the dual task parts of the assessment than neurocognitively normal controls.[13] While normative data has yet to be collected, SMARTFit offers promising potential as one of these combined cognitive-physical assessment strategies. In the absence of normative data to be able to compare performance on SMARTFit tasks to similar age groups, demographics, and clinical conditions, it is possible to assess and demonstrate relative improvements in individual performance on cognitive-motor tasks.

The Aging Brain and Neurogenesis